Atomic Force Microscopy Shows Connexin26 Hemichannel Clustering in Purified Membrane Fragments

نویسندگان

  • Brian Meckes
  • Cinzia Ambrosi
  • Heather Barnard
  • Fernando Teran Arce
  • Gina E. Sosinsky
  • Ratnesh Lal
چکیده

Connexin proteins form hexameric assemblies known as hemichannels. When docked to form gap junction (GJ) channels, hemichannels play a critical role in cell-cell communication and cellular homeostasis, but often are functional entities on their own in unapposed cell membranes. Defects in the Connexin26 (Cx26) gene are the major cause of hereditary deafness arising from dysfunctional hemichannels in the cochlea. Structural studies of Cx26 hemichannels properly trafficked and inserted in plasma membranes, including their clustering that forms a plaque-like feature in whole gap junctions, are limited. We used atomic force microscopy (AFM) to study the surface topography of Cx26 hemichannels using two different membrane preparations. Rat Cx26 containing appended carboxy terminal V5 and hexahistidine tags were expressed in baculovirus/Sf9 cell systems. The expressed Cx26 proteins form hemichannels in situ in Sf9 cells that were then purified either as (1) Sf9 membrane fragments containing Cx26 hemichannels or (2) solubilized hemichannels. The latter were subsequently reconstituted in liposomes. AFM images of purified membrane fragments showed clusters of protein macromolecular structures in the membrane that at higher magnification corresponded to Cx26 hemichannels. Hemichannels reconstituted into DOPC bilayers displayed two populations of channel heights likely resulting from differences in orientations of inserted hemichannels. Hemichannels in the protein rich portions of purified membranes also showed a reduced channel height above the bilayer compared to membranes with reconstituted hemichannels perhaps due to reduced AFM probe access to the lipid bilayer. These preparations of purified membranes enriched for connexin hemichannels that have been properly trafficked and inserted in membranes provide a platform for high-resolution AFM imaging of the structure, interconnexon interactions, and cooperativity of properly trafficked and inserted noncrystalline connexin hemichannels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy

Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membra...

متن کامل

Na,K-ATPase in crystalline form investigated by scanning force microscopy.

Na,K-ATPase has been isolated in purified membrane fragments from kidney tissue and crystallized by phospholipase treatment to obtain two-dimensional, membrane-bound protein crystals. Scanning force microscopy has been used to identify and analyze the topography of the membrane fragments. Specific patterns in accordance with electron microscopic images have been found. In biological material un...

متن کامل

Three-dimensional structure of a human connexin26 gap junction channel reveals a plug in the vestibule.

Connexin molecules form intercellular membrane channels facilitating electronic coupling and the passage of small molecules between adjoining cells. Connexin26 (Cx26) is the second smallest member of the gap junction protein family, and mutations in Cx26 cause certain hereditary human diseases such as skin disorders and hearing loss. Here, we report the electron crystallographic structure of a ...

متن کامل

Single-Molecule Atomic Force Microscopy Reveals Clustering of the Yeast Plasma-Membrane Sensor Wsc1

Signalling is a key feature of living cells which frequently involves the local clustering of specific proteins in the plasma membrane. How such protein clustering is achieved within membrane microdomains ("rafts") is an important, yet largely unsolved problem in cell biology. The plasma membrane of yeast cells represents a good model to address this issue, since it features protein domains tha...

متن کامل

Preparation of Spherical Nanocellulose by Anaerobic Microbial Consortium

This work demonstrates the preparation of spherical nanocellulose from microcrystalline cellulose by controlled hydrolysis using anaerobic microbial consortium. The nanocellulose formed during the degradation of microcrystalline cellulose was separated by ultra filtration membrane and purified by differential centrifugation. The purified nanocellulose was characterized by nanoparticle size anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014